Rabu, 15 Juli 2009

TRIGONOMETRI

HUBUNGAN-HUBUNGAN

ctg a = 1/tg a
sec a = 1/cos a
cosec a = 1/sin a
tg a = sin a / cos a
sin2 a + cos2 a = 1
tg2 a + 1 = sec2 a

Satu radian (ditulis 1 rad) adalah besar sudut dari suatu putaran yang panjang busurnya soma dengan jari-jari, lingkaran.
2p rad = 360°
p rad = 180°
1 rad = 57,29°

SUDUT ISTIMEWA
Sudut (90 - a)

sin (90 - a) = Cos a
Cos (90 - a) = sin a
tan (90 - a) = cot a Sudut (90 + a)

sin (90 + a) = Cos a
Cos (90 + a) = - sin a
tan (90 + a) = - cot a
Sudut (180 - a)

sin (180 - a) = sin a
Cos (180 - a) = - Cos a
tan (180 - a) = - tan a Sudut (180 + a)

sin (180+a) = -sina
Cos (180 + a) = - Cos a
tan (180 + a) = tan a
Sudut (270 - a)

sin (270 - a) = - Cos a
cos (270 - a) = - sin a
tan (270 - a) = ctg a Sudut (270 + a)

sin (270 + a) = -cos a
cos (270 + a) = sin a
tan (270 + a) = - cot a
Sudut (360 - a)

sin (360 - a) = - sin a
Cos (360 - a) = Cos a
tan (360 - a) = - tan a Sudut (360 + a)

sin (360 + a) = sin a
Cos (360 + a) = Cos a
tan (360 + a) = tan a

Sudut Negatif

sin (-a) = - sin a
Cos (-a) = Cos a
tan (-a) = - tan a

Sudut negatif dihitung searah dengan jarum jam.
Tanda pada sudut negatif sesuai dengan tanda pada kuadran ke IV.
RINGKASAN

Sudut (180 ± a) ; (360 ± a) ® FUNGSI TETAP, tanda sesuai dengan kuadran

Sudut (90 ± a) ; (270 ± a) ® FUNGSI BERUBAH, tanda sesuai dengan kuadran

DALIL SINUS

a = b = c
sin a sin b sin d

LUAS SEGITIGA

a² = b² + c² - 2 bc cos a
b² = a² + c² - 2 ac cos b
c² = a² + b² - 2 ab cos d

DALIL COSINUS
Luas = ½ ab sin d
= ½ ac b
= ½ bc a

Luas segitiga dengan ketiga sisinya diketahui :

L = Ö(s(s-a)(s-b)(s-c))
s = setengah keliling segitiga
= ½ (a+b+c)

LINGKARAN DALAM, LINGKARAN LUAR DAN LINGKARAN SINGGUNG SUATU SEGITIGA

1. Lingkaran Dalam Segitiga

Lingkaran L1 menyinggung sisi-sisi segitiga ABC, titik pusat lingkaran dalam didapat dari perpotongan garis bagi-garis bagi sudut segitiga ABC.

Hubungan :

rd = Ö[(s-a)(s-b)(s-c)]/s

2. Lingkaran Luar Segitiga



Lingkaran L2 melalui titik-titik sudut segitiga ABC, titik pusat lingkaran luar didapat dari perpotongan garis-garis berat segitiga ABC.

Hubungan :
rL = a = b = c
sin a sin b sin d

rL = abc
4 Ö[s(s-a)(s-b)(s-c)]

3. Lingkaran Singgung Segitiga

Lingkaran L3 menyinggung sisi BC, menyinggung garis BP (BP adalah perpanjangan sisi AB) dan menyinggung garis CQ (CQ adalah perpanjangan sisi AC). Titik pusat lingkaran berada diluar segitiga ABC. Titik pusat lingkaran singgung didapat dari perpotongan garis bagi dalam sudut A dan garis bagi luar sudut B dan sudut C. Terdapat tiga lingkaran singgung yaitu: menyinggung sisi AB, menyinggung sisi BC dan menyinggung sisi AC.

Hubungan :
rsa = jari - jari lingkaran singgung sisi BC

= Ö s(s-b)(s-c)
(s-a)
rsb = jari - jari lingkaran singgung sisi AC

= Ö s(s-a)(s-c)
(s-b)
rsc = jari - jari lingkaran singgung sisi AB

= Ö s(s-a)(s-b)
(s-c)
PENJUMLAHAN DUA SUDUT (a + b)

sin(a + b) = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b ) = tg a + tg b
1 - tg2a

SELISIH DUA SUDUT (a - b)

sin(a - b) = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b
tg(a - b ) = tg a - tg b
1 + tg2a

SUDUT RANGKAP

sin 2a = 2 sin a cos a
cos 2a = cos2a - sin2 a
= 2 cos2a - 1
= 1 - 2 sin2a
tg 2a = 2 tg 2a
1 - tg2a
sin a cos a = ½ sin 2a
cos2a = ½(1 + cos 2a)
sin2a = ½ (1 - cos 2a)

Secara umum :

sin na = 2 sin ½na cos ½na
cos na = cos2 ½na - 1
= 2 cos2 ½na - 1
= 1 - 2 sin2 ½na
tg na = 2 tg ½na
1 - tg2 ½na

JUMLAH SELISIH DUA FUNGSI YANG SENAMA


BENTUK PENJUMLAHAN ® PERKALIAN

sin a + sin b = 2 sin a + b cos a - b
2 2
sin a - sin b = 2 cos a + b sin a - b
2 2
cos a + cos b = 2 cos a + b cos a - b
2 2
cos a + cos b = - 2 sin a + b sin a - b
2 2

BENTUK PERKALIAN ® PENJUMLAHAN

2 sin a cos b = sin (a + b) + sin (a - b)
2 cos a sin b = sin (a + b) - sin (a - b)
2 cos a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)

PENJUMLAHAN FUNGSI YANG BERBEDA

Bentuk a cos x + b sin x

Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x - a)


a cos x + b sin x = K cos (x-a)

dengan :
K = Öa2 + b2 dan tg a = b/a Þ a = ... ?

Tidak ada komentar:

Posting Komentar