Rabu, 15 Juli 2009

TRIGONOMETRI

HUBUNGAN-HUBUNGAN

ctg a = 1/tg a
sec a = 1/cos a
cosec a = 1/sin a
tg a = sin a / cos a
sin2 a + cos2 a = 1
tg2 a + 1 = sec2 a

Satu radian (ditulis 1 rad) adalah besar sudut dari suatu putaran yang panjang busurnya soma dengan jari-jari, lingkaran.
2p rad = 360°
p rad = 180°
1 rad = 57,29°

SUDUT ISTIMEWA
Sudut (90 - a)

sin (90 - a) = Cos a
Cos (90 - a) = sin a
tan (90 - a) = cot a Sudut (90 + a)

sin (90 + a) = Cos a
Cos (90 + a) = - sin a
tan (90 + a) = - cot a
Sudut (180 - a)

sin (180 - a) = sin a
Cos (180 - a) = - Cos a
tan (180 - a) = - tan a Sudut (180 + a)

sin (180+a) = -sina
Cos (180 + a) = - Cos a
tan (180 + a) = tan a
Sudut (270 - a)

sin (270 - a) = - Cos a
cos (270 - a) = - sin a
tan (270 - a) = ctg a Sudut (270 + a)

sin (270 + a) = -cos a
cos (270 + a) = sin a
tan (270 + a) = - cot a
Sudut (360 - a)

sin (360 - a) = - sin a
Cos (360 - a) = Cos a
tan (360 - a) = - tan a Sudut (360 + a)

sin (360 + a) = sin a
Cos (360 + a) = Cos a
tan (360 + a) = tan a

Sudut Negatif

sin (-a) = - sin a
Cos (-a) = Cos a
tan (-a) = - tan a

Sudut negatif dihitung searah dengan jarum jam.
Tanda pada sudut negatif sesuai dengan tanda pada kuadran ke IV.
RINGKASAN

Sudut (180 ± a) ; (360 ± a) ® FUNGSI TETAP, tanda sesuai dengan kuadran

Sudut (90 ± a) ; (270 ± a) ® FUNGSI BERUBAH, tanda sesuai dengan kuadran

DALIL SINUS

a = b = c
sin a sin b sin d

LUAS SEGITIGA

a² = b² + c² - 2 bc cos a
b² = a² + c² - 2 ac cos b
c² = a² + b² - 2 ab cos d

DALIL COSINUS
Luas = ½ ab sin d
= ½ ac b
= ½ bc a

Luas segitiga dengan ketiga sisinya diketahui :

L = Ö(s(s-a)(s-b)(s-c))
s = setengah keliling segitiga
= ½ (a+b+c)

LINGKARAN DALAM, LINGKARAN LUAR DAN LINGKARAN SINGGUNG SUATU SEGITIGA

1. Lingkaran Dalam Segitiga

Lingkaran L1 menyinggung sisi-sisi segitiga ABC, titik pusat lingkaran dalam didapat dari perpotongan garis bagi-garis bagi sudut segitiga ABC.

Hubungan :

rd = Ö[(s-a)(s-b)(s-c)]/s

2. Lingkaran Luar Segitiga



Lingkaran L2 melalui titik-titik sudut segitiga ABC, titik pusat lingkaran luar didapat dari perpotongan garis-garis berat segitiga ABC.

Hubungan :
rL = a = b = c
sin a sin b sin d

rL = abc
4 Ö[s(s-a)(s-b)(s-c)]

3. Lingkaran Singgung Segitiga

Lingkaran L3 menyinggung sisi BC, menyinggung garis BP (BP adalah perpanjangan sisi AB) dan menyinggung garis CQ (CQ adalah perpanjangan sisi AC). Titik pusat lingkaran berada diluar segitiga ABC. Titik pusat lingkaran singgung didapat dari perpotongan garis bagi dalam sudut A dan garis bagi luar sudut B dan sudut C. Terdapat tiga lingkaran singgung yaitu: menyinggung sisi AB, menyinggung sisi BC dan menyinggung sisi AC.

Hubungan :
rsa = jari - jari lingkaran singgung sisi BC

= Ö s(s-b)(s-c)
(s-a)
rsb = jari - jari lingkaran singgung sisi AC

= Ö s(s-a)(s-c)
(s-b)
rsc = jari - jari lingkaran singgung sisi AB

= Ö s(s-a)(s-b)
(s-c)
PENJUMLAHAN DUA SUDUT (a + b)

sin(a + b) = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b ) = tg a + tg b
1 - tg2a

SELISIH DUA SUDUT (a - b)

sin(a - b) = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b
tg(a - b ) = tg a - tg b
1 + tg2a

SUDUT RANGKAP

sin 2a = 2 sin a cos a
cos 2a = cos2a - sin2 a
= 2 cos2a - 1
= 1 - 2 sin2a
tg 2a = 2 tg 2a
1 - tg2a
sin a cos a = ½ sin 2a
cos2a = ½(1 + cos 2a)
sin2a = ½ (1 - cos 2a)

Secara umum :

sin na = 2 sin ½na cos ½na
cos na = cos2 ½na - 1
= 2 cos2 ½na - 1
= 1 - 2 sin2 ½na
tg na = 2 tg ½na
1 - tg2 ½na

JUMLAH SELISIH DUA FUNGSI YANG SENAMA


BENTUK PENJUMLAHAN ® PERKALIAN

sin a + sin b = 2 sin a + b cos a - b
2 2
sin a - sin b = 2 cos a + b sin a - b
2 2
cos a + cos b = 2 cos a + b cos a - b
2 2
cos a + cos b = - 2 sin a + b sin a - b
2 2

BENTUK PERKALIAN ® PENJUMLAHAN

2 sin a cos b = sin (a + b) + sin (a - b)
2 cos a sin b = sin (a + b) - sin (a - b)
2 cos a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)

PENJUMLAHAN FUNGSI YANG BERBEDA

Bentuk a cos x + b sin x

Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x - a)


a cos x + b sin x = K cos (x-a)

dengan :
K = Öa2 + b2 dan tg a = b/a Þ a = ... ?

STATISTIKA

Salah satu definisi menyebutkan bahwa statistik adalah metode ilmiah untuk menyusun, meringkas, menyajikan dan menganalisa data, sehingga dapat ditarik suatu kesimpulan yang benar dan dapat dibuat keputusan yang masuk akal berdasarkan data tersebut.

Jika suatu kesimpulan data sudah dihimpun, pada statistika deskriptif kita hendak menyimpulkan data itu dalam beberapa hal. Pertama kita hendak membuat tabel, misalnya tabel frekuensi, tabel frekuensi kumulatif dan lain-lain yang mengatur data kasar itu. Juga kita akan melihat diagram atau grafik yang dapat memberi gambaran mengenai keseluruhan data itu, misalnya diagram lambang (piktogram), diagram batang, diagram lingkaran, histogram, ogive dan lain-lain. Kemudian kita hendak menghitung karakteristik data yang dapat mencakup semua data itu, misalnya rata-rata, median, modus dan lain-lain.
HISTOGRAM dan POLIGON FREKUENSI adalah dua grafik yang menggambarkan distribusi frekuensi.

HISTOGRAM terdiri dari persegi panjang yang alasnya merupakan panjang kelas interval, sedangkan tingginya sama dengan frekuensi masing-masing kelas interval.

POLIGON FREKUENSI adalah suatu garis putus putus yang menghubungkan titik tengah ujung batang histogram. Biasanya ditambah dua segmen garis lain yang menghubungkan titik tengah ujung batang pertama dan terakhir dengan titik tengah kelas yang paling ujung dimana frekuensinya bernilai nol.

Distribusi frekuensi kumulatif dapat digambarkan oleh suaatu grafik yang disebut Poligon Frekuensi Kumulatif atau OGIVE, yang melukiskan frekuensi kumulatip terhadap batas atas kelas.

Untuk sekelompok data yang diperoleh, yaitu x1, x2, x3, . . . . . . , x maka dapat ditentukan:

1. RATA-RATA (MEAN) (notasi: x dibaca : x bar)
_
x = (x1+x2+.....+xn)/n = å xi / n = å (fi.xi) / n dimana åfi = n

~
2. MEDIAN (notasi: x )
Adalah nilai tengah dari data yang telah diurutkan menurut besarnya.

Dengan ketentuan:
Jika banyak data ganjil, maka median adalah nilai tengah dari data yang telah diurutkan.

(Data ke (n+1)/2 )

^
3. MODUS (notasi : x)
Adalah nilai data yang sering muncul (mempunyai frekuensi terbesar). Modus dapat ada ataupun tidak ada. Kalaupun ada dapat lebih dari satu.

# RATA-RATA

_
x = å(fi.xi)
x
xi
fi
åf = n = titik tengah kelas ke i
= ½(batas bawah + batas atas)
= frekuensi kelas ke i = jumlah seluruh data

MENGHITUNG RATA-RATA DENGAN MENGGUNAKAN RATA-RATA SEMENTARA

_
x = xo + å (fi.ui)/n . c
xa
fi
ui

n
c = rata-rata sementara
= frekuensi kelas ke i
= simpangan kelas ke i terhadap kelas rata-rata sementara
= banyaknya data
= interval kelas = panjang kelas
= lebar kelas = tepi atas-tepi bawah


# MEDIAN

Median = L2 + 1/2n - (åf)2 . c
f med
L2

(åf)2


f med
n
c = tepi bawah kelas median
= jumlah frekuensi kelas yang lebih rendah dari kelas median
= frekuensi kelas median
= banyaknya data
= interval kelas


# MODUS

Modus = Lo + D1/(D1+D2)
Lo
D1


D2


c = tepi bawah kelas modus
= kelebihan frekuensi kelas modus terhadap frekuensi kelas yang lebih rendah
= kelebihan frekuensi kolas modus terhadap frekuensi kelas yang lebih tinggi
= interval kelas

JANGKAUAN (RANGE) Notasi: J

Untuk data yang tidak dikelompokkan, jangkauan adalah selisih antara nilai terbesar dan nilai terkecil. Untuk data yang dikelompokkan, jangkauan adalah selisih antara titik tengah kelas tertinggi dengan titik tengah kelas terendah.


KUARTIL Notasi: q

Kuartil membagi data (n) yang berurutan atas 4 bagian yang sama banyak.

------|------|-------|-------
Q1 Q2 Q3

Q1 = kuartil bawah (1/4n )
Q2 = kuartil tengah/median (1/2n)
Q3 = kuartil atas (1/4n )

Untuk data yang tidak dikelompokkan terlebih dahulu dicari mediannya, kemudian kuartil bawah dan kuartil atas.

Untuk data yang dikelompokkan rumusan kuartil identik dengan rumusan mencari median.

Q1 = L1 + [(1/4n - (å f)1)/fQ1] . c

Q3 = L3 + [(3/4n - (å f)3)/fQ3] . c


DESIL Notasi: D

Desil membagi data (n) yang berurutan atas 10 bagian yang sama besar. (D,, D2, D3, . . . . . . , D9)

Di = Li + ((i/10)n - (å f)i)/fi . c


PERSENTIL Notasi: P

Persentil membagi data (n) yang berurutan atas 100 bagian yang sama besar. (P1, P2, P3, . . . . . . ,P99)

Pi = Li +( i/100 n - (åf)i)/fi . c

Cara mencari Desil dan Persentil identik dengan cara mencari kuartil.


SIMPANGAN

SIMPANGAN KUARTIL Notasi: Qd
(JANGKAUAN SEMI INTERKUARTIL)

Qd = (Q3 - Q1) / 2

SIMPANGAN BAKU Notasi: S
(STANDAR DEVIASI)

S = Ö((åfi(xi-x bar)²)/n)


atau CARA CODING
___________________
S = Ö (å fidi² / n) - (fidi/n)²
__________________
= c Ö (å fiui² / n) - (fiui/n)²


RAGAM (VARIANSI) Notasi: S²


KOEFISIEN KERAGAMAN V = S / x bar . 100%

KINEMATIKA

KINEMATIKA adalah Ilmu gerak yang membicarakan gerak suatu benda tanpa memandang gaya yang bekerja pada benda tersebut (massa benda diabaikan). Jadi jarak yang ditempuh benda selama geraknya hanya ditentukan oleh kecepatan v dan atau percepatan a.

Gerak Lurus Beraturan (GLB) adalah gerak lurus pada arah mendatar dengan kocepatan v tetap (percepatan a = 0), sehingga jarakyang ditempuh S hanya ditentukan oleh kecepatan yang tetap dalam waktu tertentu.

Pada umumaya GLB didasari oleh Hukum Newton I ( S F = 0 ).

S = X = v . t ; a = Dv/Dt = dv/dt = 0

v = DS/Dt = ds/dt = tetap


Tanda D (selisih) menyatakan nilai rata-rata.

Tanda d (diferensial) menyatakan nilai sesaat.

Gerak Lurus Berubah Beraturan (GLBB) adalah gerak lurus pada arah mendatar dengan kecepatan v yang berubah setiap saat karena adanya percepatan yang tetap. Dengan kata lain benda yang melakukan gerak dari keadaan diam atau mulai dengan kecepatan awal akan berubah kecepatannya karena ada percepatan (a= +) atau perlambatan (a= -).

Pada umumnya GLBB didasari oleh Hukum Newton II ( S F = m . a ).

vt = v0 + a.t

vt2 = v02 + 2 a S

S = v0 t + 1/2 a t2

vt = kecepatan sesaat benda
v0 = kecepatan awal benda
S = jarak yang ditempuh benda
f(t) = fungsi dari waktu t

v = ds/dt = f (t)

a = dv/dt = tetap

Syarat : Jika dua benda bergerak dan saling bertemu maka jarak yang ditempuh kedua benda adalah sama.
GERAK JATUH BEBAS: adalah gerak jatuh benda pada arah vertikal dari ketinggian h tertentu tanpa kecepatan awal (v0 = 0), jadi gerak benda hanya dipengaruhi oleh gravitasi bumi g.

y = h = 1/2 gt2
t = Ö(2 h/g)
yt = g t = Ö(2 g h)

g = percepatan gravitasi bumi.
y = h = lintasan yang ditempuh benda pada arah vertikal,(diukur dari posisi benda mula-mula).
t = waktu yang dibutuhkan benda untuk menempuh lintasannya.


GERAK VERTIKAL KE ATAS: adalah gerak benda yang dilempar dengan suatu kecepatan awal v0 pada arah vertikal, sehingga a = -g (melawan arah gravitasi).

syarat suatu benda mencapai tinggi maksimum (h maks): Vt = 0

Dalam penyelesaian soal gerak vertikal keatas, lebih mudah diselesaikan dengan menganggap posisi di tanah adalah untuk Y = 0.
1. Gerak Setengah Parabola

Benda yang dilempar mendatar dari suatu ketinggian tertentu dianggap tersusun atas dua macam gerak, yaitu :
a.

Gerak pada arah sumbu X (GLB)

vx = v0
Sx = X = vx t





Gbr. Gerak Setengah Parabola
b.

Gerak pada arah sumbu Y (GJB/GLBB)

vy = 0
]® Jatuh bebas
y = 1/2 g t2


2. Gerak Parabola/Peluru

Benda yang dilempar ke atas dengan sudut tertentu, juga tersusun atas dua macam gerak dimana lintasan
dan kecepatan benda harus diuraikan pada arah X dan Y.
a.

Arah sb-X (GLB)

v0x = v0 cos q (tetap)
X = v0x t = v0 cos q.t




Gbr. Gerak Parabola/Peluru
b.

Arah sb-Y (GLBB)

v0y = v0 sin q
Y = voy t - 1/2 g t2
= v0 sin q . t - 1/2 g t2
vy = v0 sin q - g t



Syarat mencapai titik P (titik tertinggi): vy = 0

top = v0 sin q / g

sehingga

top = tpq
toq = 2 top

OQ = v0x tQ = V02 sin 2q / g

h max = v oy tp - 1/2 gtp2 = V02 sin2 q / 2g

vt = Ö (vx)2 + (vy)2
1. GERAK MELINGKAR BERATURAN (GMB)

GMB adalah gerak melingkar dengan kecepatan sudut (w) tetap.


Arah kecepatan linier v selalu menyinggung lintasan, jadi sama dengan arah kecepatan tangensial sedanghan besar kecepatan v selalu tetap (karena w tetap). Akibatnya ada percepatan radial ar yang besarnya tetap tetapi arahnya berubah-ubah. ar disebut juga percepatan sentripetal/sentrifugal yang selalu | v.

v = 2pR/T = w R

ar = v2/R = w2 R

s = q R



2. GERAK MELINGKAR BERUBAH BERATURAN (GMBB)

GMBB adalah gerak melingkar dengan percepatan sudut a tetap.

Dalam gerak ini terdapat percepatan tangensial aT = percepatan linier, merupakan percepatan yang arahnya menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan v).

a = Dw/Dt = aT / R

aT = dv/dt = a R

T = perioda (detik)
R = jarijari lingkaran.
a = percepatan angular/sudut (rad/det2)
aT = percepatan tangensial (m/det2)
w = kecepatan angular/sudut (rad/det)
q = besar sudut (radian)
S = panjang busur

Hubungan besaran linier dengan besaran angular:
vt = v0 + a t wt
S = v0 t + 1/2 a t2 Þ w0 + a t
Þ q = w0 + 1/2 a t2